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Abstract-Laminar thermogravitational convection in concentric and eccentric horizontal, cylindrical 
annuli, filled with two immiscible fluids (water/air, water/silicon oil 10, water/silicon oil 100, Freon 113/ 
water) is studied numerically. Streamline and temperature distributions, local and average equivalent 
thermal conductivities are obtained over a wide range of Rayleigh number. The influence of thermocapillary 
convection (Marangoni convection) is similarly demonstrated for the water/air system in an annular 

enclosure. 

1. INTRODUCTION 

BUOYANCY-driven convective heat transfer in a cavity 
filled with two immiscible fluids of different density is 
of great importance for many natural and industrial 
processes. Among other technical applications, the 

‘processing of metals, semiconductors, ceramics and 
polymers involves molten and vapor phases. The fluid 
mechanics of such technical processes, the origins and 
consequences of convective transport, however, are 
not adequately understood. Moreover gravity is not 
the only source of convective motions. It is of minor 

influence if the dimensions of the fluid system are 
small or if the system is exposed to micro-gravity 
conditions. Under these circumstances thermo- 
capillary convection, induced by a surface tension 
gradient, is dominant. This kind of free convection, 
sometimes referred to as Marangoni convection, is 
nowadays of wide interest to the future possibility of 
material processing in space. The research activities 
on this subject may be seen from the large number of 
experiments performed during the flights of sounding- 

rockets (NASA SPAR and TEXUS flight exper- 
iments) [I] and in the special ‘Fluid Physics Module’ 
during Dl mission in Spacelab a few months ago. 

The objective of the present study, divided into two 
sections, is to gain some insight into fluid motion 
and heat transfer phenomena if one or both types 
of convection, mentioned above, occur. The system 
under consideration consists of an annulus between 
two coaxially arranged, circular cylinders filled with 

*This contribution is dedicated to Professor F. BoSnjakoviC 
on the occasion of his 85th birthday. 

t Present address : Robert Bosch GmbH, Dept. KS/EMF, 
P.O. Box 300220, 7000 Stuttgart 30, Federal Republic of 
Germany. 

two dissimilar fluids. Whereas the second section will 
be concerned with Marangoni convection and its 
influence on buoyancy-driven convection, the first sec- 
tion deals with thermogravitational convection taking 
into account various fluid combinations and eccen- 
tricities of the inner cylinder. 

Due to the fact that the geometric shape of the 
system under consideration is connected with numer- 
ous technical applications, extensive experimental and 
theoretical work has been done during the last half of 
the century to investigate one-phase fluid motion and 
heat transfer in horizontal enclosures of concentric 
and eccentric cylindrical, annular shape. Compre- 

hensive literature surveys on natural convection in 
such systems were given by Kuehn and Goldstein [2] 

for early works and by Projahn and Beer [3] for 
recently published results, including especially all 
works considering the influence of eccentricity and 
Prandtl number. 

Investigations concerning heat and fluid flow 

phenomena caused by natural convection in systems 
containing multiple fluid layers are scarce. A review 
on the existing literature may be found in ref. [4]. In 
this work Projahn and Beer performed a theoretical 
and experimental study on transient and steady-state 
natural convection heat transfer from a vertical, flat 
plate partially immersed in water. Recently heat trans- 
fer results for a closed, square container filled with a 
liquid and a gas were published by Oosthuizen and 
coworkers [5,6]. 

Although the transport phenomena in horizontal 
annuli formed by two circular cylinders and filled with 
two immiscible fluids are very important for many 
technical applications, no studies of the problem 
addressed in this paper seem to be available in the 
literature. 
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thermal diffusivity 

abbreviation, [J(d”-g,,d”/g, ,]’ 
abbreviation, [T,,--g,,T,,/g, J/J]* 
Bond number, j(p- -p+)Z?/cr 
deformation tensor 
diameter 
determinant of the metric tensor 
covariant basis vector 
acceleration of gravity 

NOMENCLATURE 

Sl,> d’ co- and contravariant components of 
the metric tensor 

G region 
Gr Grashof number, Ra/Pr 
h film heat transfer coefficient 

J Jacobian of transformation, & 
k thermal conductivity 
K,-K, property ratios 
L 
Ma 
n 
NU 

P 
Pr 
R 
Ra 
s 
t 
T 
Iv’ 

gap width, R, - R, 
Marangoni number, equation (10d) 
coordinate in normal direction 
Nusselt number, hL/k- 
pressure 
Prandtl number, equation (6) 
radius 
Rayleigh number, equation (7) 

arc length 
time 
temperature 
contravariant velocity component, 
(W’, w?) = (U, 0) 

X’ Cartesian coordinates, (x’, x’) = (x, y) 

Ii covariant derivative with respect to ci. 

Greek symbols 
fi thermal expansion coefficient 

s, vertical displacement of inner cylinder 

5’ curvilinear coordinate system, 

(5’, 5’) = (5, r) * 
equivalent thermal conductivity 

p dynamic viscosity 
V kinematic viscosity 

P density 
0 surface tension 

Z 

angle (Fig. 1) 
angle of gravity 

II/ streamfunction. 

Subscripts 

,i derivative with respect to <’ 

,r derivative with respect to t 
A area 
C cold, conduction 
h hot 
i inner cylinder 
0 outer cylinder 
tot total. 

Superscripts 

+ refers to the lighter fluid 
_ refers to the heavier fluid 

mean value. 

2. PROBLEM FORMULATION AND 

NUMERICAL SOLUTION 

The problem under consideration is that of two- 
dimensional, laminar convection in two immiscible 
fluids of different density enclosed between two hori- 
zontal, concentric or eccentric cylinders. A schem- 
atic representation of the geometric arrangement is 
depicted in Fig. 1. In the case of eccentricity the inner 
cylinder is displaced up- or downwards along the ver- 
tical centerline by the distance E, 5 0. The heavier 
fluid, denoted by (-), fills the lower part of the annu- 
lus, so that the interface coincides with the horizontal 
centerline of the inner cylinder. The surface between 
the two fluids is assumed to be flat and to remain 
unchanged under dynamical conditions. The first 
assumption is correct if the contact angle between 
solid and fluid is equal to 7c/2 and may be applied 
approximately for other angles if the Bond number 
Bo is large. Due to the small velocities occurring in 
natural convection processes, the second assumption 
implies no restriction of the model. Moreover it is 
assumed that both cylinders are maintained at differ- 

ent uniform temperatures T, > To. At the solid bound- 
aries the hydrodynamic no-slip condition (w’ = 0) is 

applied. Furthermore, the flow is symmetrical about 
a vertical plane through the axis of the cylinder. 
Accordingly, attention is confined to the range 
0 < cp < R. All fluid properties are taken to be con- 
stant except the density of the fluids, for which the 
validity of the Oberbeck-Boussinesq approximation 
is adopted. Further assumptions are neglecting vis- 
cous dissipation and compressibility effects. 

Because generality was the objective of the code 
developed, the grid generation technique proposed 
by Thompson et al. [7] was applied to eliminate the 
difficulties associated with the geometric shape of 
the solution domain. Compared with other trans- 
formation techniques, which are often valid only for 
a single class of geometries, the proposed method 
has the great advantage that many geometric con- 
figurations of different kind can be treated with just 
the one computer program. 

Employing general coordinate systems, the con- 
servation equations for mass, momentum and energy, 
governing the problem under study, have to be for- 
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FIG. 1. Schematic representation of the problem under consideration with boundary conditions. 

mulated for a general Euclidean reference frame. Suit- 

ably, general tensor notation-as used, for example, 
in ref. [81-k applied. Introducing the following 
abbreviations 

K, = p-/p+;K2 = v+/v-; K, = fl+//V; 

K4 = a+/a- ; KS = k+/k- (1) 

the governing equations for the present problem and 
for the fluids (+) and (-) are then given in non- 
dimensional form as (a detailed derivation of the gen- 
eral conservation equations may be found in [9]) : 

mass : 

momentum : 

(Jw’)., = 0 (i = 1,2) (2) 

+{~3}RamPrMT@jgi=0 (i,j= 1,2) (3) 

where 

and 

energy : 

In order to obtain equations (2) and (3) dimensionless 
variables are used. The scaling factors are L = R, - R, 

for space coordinates, L2/am for time, v-/L for vel- 

ocity and L2/(pa2)- for pressure. It should be noted 
that the thermophysical properties of the heavier fluid 
(-) are chosen for reference to obtain consistent 
dimensionless equations for both fluid regions. 

Furthermore, a nondimensional temperature is 

defined by 

T- T, 
T+-- 

T,--Tc 

where T,, = T, and T, = To are the temperatures of 

the inner and outer cylinder, respectively. With these 
nondimensional variables two dimensionless numbers 

are introduced : 

Prandtl number Pr- = v-/a- (6) 

Rayleigh number 

Ram = Gr-Pr- = ifl-(T,,- Tc)L3/v-a-. (7) 

In order to solve equations (2)-(4) appropriate 
boundary conditions have to be specified. 

(a) Cylinder walls (0 < q < 7~). They are rigid (no 
slip boundary condition) and at a prescribed tem- 
perature, i.e. 

R=R,: w’=O (i= 1,2); T= 1 (84 

R= R,: w’=O (i= 1,2);T=O. (8b) 

(b) Symmetry lines (cp = 0, 7~). For a line of sym- 
metry 5’ = const. the following conditions, which can 
be deduced directly from symmetry arguments, result : 
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no normal velocity component : 

w’/J&O P-4 

continuity of tangential velocity component : 

(9b) 

continuity of heat flux : 

g&o (i= 1,2). (9c) 
Js” 

(c) Interface (cp = n/2). General boundary con- 
ditions for the fluid-fluid interface could be obtained 

by making available complete balance equations for 
the interface phase, which is considered as a thin shell 
in the three-dimensional Euclidean space [9]. Using 
this equation one would have to face the question of 
interface properties, e.g. ‘interface viscosity’, ‘inter- 
face thermal conductivity’, etc., which are not known, 
even their order of magnitude. For simplification the 
interface is assumed to be singular, resulting in the 
following dimensionless set of coupling conditions for 
the two phases (+) and (-) : 

Interface : coordinate line 5 * = const. 

(w’)’ = (WI)- (no slip) (lOa) 

(w’)’ = (w’)- = 0 (no penetration) (lob) 

(K,/K,)&+-&-+Ma- Tz,/&, = 0 

where 

(momentum conservation) (1 Oc) 

Ma- = (do/dT)ATL/a-p- (Marangoni number) 

T+ = T- (continuity of temperature) 

K&t?+ -a’- = 0 (continuity of heat flux). 

It should be noted, however, that the balance 

(1Oh) 

(104 

UOf) 

equa- 

tions of momentum yield two boundary conditions, 
where the equation describing the contour of the 
interface is omitted due to the assumption of an un- 
deformable interface. The governing set of equations 
(2)-(4) in the primitive variable formulation, together 
with a Poisson equation for pressure, which replaces 
the continuity equation (2), are solved numerically 
by applying the finite-difference method. To avoid 
oscillating variable fields, the variables are located on 
staggered grids (MAC-scheme). Because only steady- 
state conditions are of interest for the present study, 
the false transient technique is employed to accelerate 
convergence. Further details concerning discretiz- 
ation, arrangement of the variables and numerical 
methods used to solve the resulting sets of algebraic 
equations may be found in ref. [9]. 

Employing finite-difference techniques, the solution 
domain G has to be covered by a system of coordinate 
lines. As pointed out, general domains of complex 

FIG. 2. Grid system. 

shape could easily be handled by applying bodyfitted 
coordinate systems. Typical grids, numerically gen- 
erated as solution of an elliptic boundary-value prob- 
lem, are shown in Fig. 2. In order to get high res- 

olution in regions where steep gradients of the 
variables can be expected, the coordinate lines are 
clustered there. As a compromise between accuracy 
and computational costs, grids with the following 

number of nodal points are used : 

E,/L = 0.625 G-/G+ : (33 x 33, 33 x 21) 

&,/L = 0.0 G-/G+ : (33 x 2533 x 25) 

E,/L = -0.625 G-/G+ : (33 x 21, 33 x 33). 

3. EQUIVALENT THERMAL CONDUCTIVITY 

Studying heat transfer in cylindrical annuli, heat 

transfer rates are usually expressed in terms of the 
equivalent thermal conductivity. This dimensionless 

quantity is equal to the ratio of total heat transfer to 
heat transfer due to heat conduction only, i.e. 

A’ = Nu*/Nu, (11) 

where the Nusselt number Nu may be calculated from 
the temperature gradient normal to the cylinder wall 
(ti = const.) 

Nu* = h*L/k- = (_i= 1>2). (12) 

The Nusselt number Nu, for pure heat conduction is 
based on the concentric annulus case and results in 

Nn, = h,Llk- = LI&,,, WR,IR,)I. (13) 

For the problem under consideration, where the annu- 
lus contains two immiscible fluids, the following defi- 
nition of the equivalent conductivity is introduced. It 
takes into account the ratio of the wetted cylinder 
surfaces A* to the total area A,,, 

A; = A*A*lA,,,. (14) 
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In order to express the overall heat transfer across a 
given surface, the global equivalent conductivity A 
has to be calculated. With the definitions given above 
one obtains by integration : 

= jl,‘+iT, = Nu/Nu, (15) 

where s denotes the arc length along the cylinder sur- 
face. 

4. RESULTS AND DISCUSSION 

Numerical solutions to the problem of heat transfer 
due to buoyancy-driven and thermocapillary con- 
vection have been obtained for a diameter ratio 
D,/Dt = 2.6. The majority of the computations have 
been performed for a concentric arrangement of both 
cylinders, whereas only for the case of pure thermo- 
gravitational convection has eccentricity been intro- 
duced as a further parameter. 

All results are first presented qualitatively in the 
form of streamline and isotherm patterns and then 
quantitatively by the distribution of the local 
equivalent conductivity AA which is supplemented 
by the global values ii. Because all variables are 
nondimensionalized with the properties of the heavier 
fluid, the problem-dependent Rayleigh number used 
for the calculations is Ram, characterizing fluid flow 
and heat transfer in the region G-. The parameter 
Ra+ may be calculated from 

Ra+/Ra- = K,/K,K,. (16) 

For the fluid combination air and water the following 
relation holds 

Ra+ = 7.23 x lo- ‘Ra- (17) 

i.e. both fluid segments are dominated by quite 
different flow regimes for the majority of Rayleigh 
numbers Ram studied. 

4.1. Thermogravitational convection 
The investigations concerning thermogravitational 

convection only (Ma- = 0) have been performed for 
eccentricities 

EJL = 0.625; 0.0; -0.625 

for Rayleigh numbers in the range lo3 < Ra- < 10’ 

and for systems containing various fluid combi- 
nations. For the numerical calculations the thermo- 
physical properties given in Table 1 based on a ref- 
erence temperature of 20°C have been used. 

The motion of the fluid and the resulting tem- 
perature field provides one way to observe local effects 
of buoyancy. In Fig. 3, these effects are vividly por- 
trayed in plots of lines of constant streamfunction and 
isotherms for a concentric arrangement (EJL = 0.0) 
of both cylinders and the fluid combination water/ 
air. As mentioned earlier, the problem under con- 
sideration is symmetrical with respect to a vertical 
axis, and it was found advantageous to reproduce 
the computer results on a single graph with the flow 
pattern on the right half of the cavity and isotherms 
on the left half. It is obvious that heat transfer in 
both fluid parts depends mainly on heat conduction 
for Ra- = lo3 (Ra+ 2: 7). Due to a stronger fluid 
motion in the water-filled portion of the annulus and 
because both convective cells have the same sense of 
rotation, a secondary flow cell is induced near the 
interface of the air-filled space. At the interface fluid 
motion is directed towards the cold wall, leading to 
a concentration of the isotherms at this point. With 
increasing Rayleigh number this effect is enhanced 
and the secondary cell is pushed aside due to an inten- 
sified convective motion in the upper part of the annu- 
lus. The transition from conduction to the laminar 
boundary-layer regime is terminated in the water 
segment at Ra- = IO’. In the part containing air, 
heat transport is dominated by conduction up to 
Ra- = 10’ (Ra+ = 723). Only when the Rayleigh 
number is increased further does the transport mech- 
anism change. For Ra- = lO’(Ra+ = 73,200) the dis- 
tribution of the fields of variables indicates that the 
heat transfer characteristics in both fluids may be 
related to the boundary-layer regime. 

The influence on heat transfer is evidenced in more 
detail by the distribution of the local equivalent con- 
ductivity along the outer and inner cylinder, depicted 
in Fig. 4. In each case the left half represents the 
conductivity within the fluid (+) and the right half 
that within the fluid (-). It has to be emphasized 
that different scales are valid in both halves. For 
Ram = 10 3 heat transfer is dominated by heat conduc- 
tion. It is worth mentioning that in the case of pure 
heat conduction the local equivalent conductivities A, 
per definition [equation (14)] are equal to 0.5 and 
0.5K,, respectively. With increasing Rayleigh num- 
bers convective motion is enhanced, leading to a dis- 

Table 1 

Fluid( -)/fluid( +) K, K2 K, Pr’jPr- 

water/air 849.6 16.82 18.5 152.2 0.043 0.1 
water/silicon oil 10 1.06 11.20 4.18 0.65 0.213 15 
water/silicon oil 100 1.03 111.99 3.75 0.71 0.246 136 
Freon 113/water 1.58 2.22 0.133 2.19 6.45 -1 
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RZi =105 Ei = IO7 

FIG. 3. Lines of constant streamfunction (left) and temperature (right) for various Rayleigh numbers and 
the system water/air (Pr’ = 0.7 ; Pr- = 7.0; c,/L = 0). 

tinct local distribution of AA, with increasing maxima 
at the interface. As a rest& of thermal stratification, 
heat transfer is decreased strongly in the lower part 
of the fluid (-), whereas another maximum occurs at 
the outer cylinder in the upper part of the annulus 
(air) due to the stagnation flow. Heat transfer at the 
inner cylinder is hampered for small Rayleigh num- 
bers (Rc = 10’; IO“) as the air warms up flowing 
along the interface. Only after an intensification of the 
convective flow is heat transfer increased at the inner 
cylinder, leading to nearly identical values at the inter- 
face and at the upper stagnation point. In the upper 
part (air) the maximum values appear in the reversal 
zone of the circulating air flow (cp = 60”). In the water- 
filled space, maximum values are registered at the 
lower stagnation point of the inner cylinder. 

Figure 5 depicts the flow and isotherm patterns 
obtained for the two eccentric configurations under 
study and three selected Rayleigh numbers. For 
8,/L = -0.625 the convective motion in the air-filled 
space is stronger than for a concentric arrangement 
of the cylinders, resulting in a smaller secondary flow 
cell above the interface. The presence of a stronger 
fluid motion may also be seen from the distribution 
of the isotherms. The deviations from the conduction 
solution for small and intermediate Rayleigh numbers 

as well as the thermal plume for high Rayleigh num- 
bers are more pronounced than in Fig. 3. For the flow 
regimes in the water layer no significant differences to 
those of the concentric case are detectable. The effect 
of positive eccentricity is discernible from the dimen- 
sions of the secondary cells induced by the water 
motion across the interface. It is evident that this 
geometric configuration of two cylinders inhibits 
convective motion in the upper part of the annulus. 
This is easily recognized by the temperature fields for 
Ra- = lo7 and lo5 which remain nearly unchanged, 
showing that heat conduction is the dominating heat 
transfer mechanism. Increasing the Rayleigh number 
up to 107. convection becomes stronger and heat 
transfer is characterized by thin boundary layers along 
the cylinder walls. The boundary layer around that 
part of the inner cylinder which is exposed to air 
separates at cp N 30” and forms two counter-rotating 
cells. Quite similar multicellular flows were found to 
exist for the same geometric configuration when the 
annulus is filled with a homogeneous fluid, for Prandtl 
numbers in the range 0.7 4 Pr < 100 [3.10]. 

In comparison with the concentric case the large 
stagnant fluid region below the inner cylinder is 
remarkable. 

Local equivalent conductivities for eccentric con- 
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FIG. 4. Local distribution of the equivalent thermal conductivities along the outer (a) and inner (b) cylinder 
for various Rayleigh numbers and the system water/air. 

figurations are plotted in Fig. 6. Whereas heat transfer 
rates in the air-filled part of the annulus for negative 
eccentricity do not deviate strongly from those for the 
concentric configuration, the maximum heat transfer 
rates shift to a position below the interface in the 
water layer. Differences to the concentric arrangement 
may also be encountered for the lighter fluid at the 
outer cylinder for positive eccentricity (Fig. 6~). In 
this case the second relative maximum forms at 
cp = 30” for Ra- 2 106, as a consequence of the sec- 
ondary roll cell. This behavior causes the formation 
of two maxima (Fig. 6d) at the inner cylinder for 
Ra- 2 106; these are located at the upper stagnation 
point and at the point of impact of the circulation 
flow near the interface. 

In Fig. 7 the mean equivalent conductivity A, aver- 
aged with respect to both fluids, is plotted vs Ram, 

defined with the properties of fluid(-) (water). The 
symbols represent the theoretical/numerical data 
which can be approximated quite well by a straight 
line for Ra- > lo4 which yields the correlation 

A = 0.098(Ram)0.242 (lo4 < Ram < 10’). (18) 

The maximum deviation amounts to +7.8% for 
Ra- = lo4 and 6,/L = -0.625. If equation (18) is 
restricted to Ra- > lo’, the maximum deviation is 
decreased to +3.2% (Ram = lo’, 8,/L = +0.625). 
For comparison, mean equivalent conductivities for 
a homogeneous fluid in a horizontal, concentric annu- 
lus-as determined in refs. [3,10]-are plotted in 
Fig. 7. This demonstrates that a partially filled annulus 
(water/air) causes a drastic deterioration in heat trans- 
fer. In contrast to the heat transfer in homogeneous 
fluids, where only in the case of a vertical downward 
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Ret = 10’ Ri = lo7 

FIG. 5. Streamlines (left) and isotherms (right) for various Rdyieigh numbers and eccentricities for the 
system water/air (Pr’ = 0.7 ; Pr- = 7.0). Top row: E,/L = -0.625; bottom row: E,/L = i-0.625. 
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FIG. 6. Local equivalent thermal conductivities along the outer (a,c) and inner (b,d) cylinder for various 
Rayleigh numbers and the system water/air. Left: E,/L = -0.625; right: 2,/L = t0.625. 
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FIG. 7. Mean equivalent thermal conductivities as a function 
of the Rayleigh number for the concentric and eccentric 
annuius and the system water/air (8,/L = +0.625, 0, 

-0.625). 

displacement of the inner cylinder could an enhance- 
ment of heat transfer be registered, there results a 
slight increase of jT (l-5%) in a partially filled annulus 
(water/air) for all cases of eccentricity as compared 
with the concentric configuration. 

The influence of different th~~ophysical properties 
on the transport phenomena was investiga~d for a 
concentric arrangement of the cylinders and for the 
fluid combinations tabulated above. For reason of 
brevity the results are restricted to solutions for 
Ra- = 10’ (Ra: = 723; Ra: = 57,200; Rat = 4680; 

water /air 

water / siliconoil 100 

Rat = 2740). The nature of the flow pattern in the 
form of streamfunction and temperature distri- 
butions is shown in Fig. 8. With the exception of 
the secondary eddies appearing in the region G- of 
the water/silicon oil systems, all lines of constant stre- 
amfunction have nearly the same structure and mag- 
nitude. The effect of stratifying the heavier fluid by a 
more viscous fluid is elucidated by the behavior of the 
isotherms. While the lines of constant temperature 
attain their maximum depth of penetration exactly at 
the interface for the combination water/air, this point 
is located some distance beneath the interface if the 
upper fluid has a higher viscosity. As a consequence 
the isotherms are bent backwards in the vicinity of 
the interface. This result is always obtained if the 
separating plane between air and water is considered 
to be a solid interface [4]. For the water/air system the 
absolute maximum heat transfer along the lower part 
of the outer cylinder was found at the interface. In 
contrast to that the maximum for the other fluid com- 
binations may be expected at cp ‘u 100”. 

Due to the different Rayleigh numbers Ra+, quite 
different regimes occur in the annulus above the inter- 
face. While heat transfer is dominated by heat con- 
duction in the space containing air, convection affects 
heat transport in the remaining systems. The strongest 
fluid motion may be observed in that part of the 
annulus filled with silicon oil 10. This is recognized on 
the corresponding plot as a temperature inversion and 

water / siliconoil 10 

freon 113 / water 
FIG. 8. Streamlines (left) and isotherms (right) for various fluid combinations and RQ- = 105. 
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by the location of the convective cell center, which has 
moved towards cp = 0”. The motion of the fluid is 
strong enough to induce a secondary flow cell in the 
lower half of the annulus. 

The influence of strongly different viscosities on the 
transport mechanisms may be detected by comparing 
the systems water/silicon oil 100 (p+/p- = 109) 

and Freon 113/water @+/pm = 1.4). Although both 
Rayleigh numbers Ra +, characterizing heat transfer and 
fluid flow in the upper half of the annulus, are of the 
same order of magnitude, quite different flow patterns 
are obtained. Due to the high viscosity of the oil the 
secondary flow cell forms in the fluid( -), whereas the 
nearly identical viscosity of Freon 113 leads to a roll 

cell in the upper liquid, induced by the relative strong 
convective motion in the Freon layer. 

The local equivalent conductivities along the outer 
cylinder are depicted in Fig. 9. A corresponding A- 
distribution along the inner cylinder was omitted, as 

the principle characteristics remain unchanged as 
compared with the system water/air. Contrary to the 
common practice the equivalent conductivity An of 
Freon 113/water is not related to the fluid( -) but to 
the fluid(+) (water), in order to ensure a uniform 
presentation. As mentioned, the maximum conductiv- 

ities occur below the interface (cp = lOtk105’) except 
for the system water/air. The highest local heat trans- 
fer rate is achieved with the system water/air, as the 
circulating air flow is scarcely retarded (by virtue 
of the low viscosity) and therefore impinges on the 
outer cylinder with a higher velocity. The smallest 
heat transfer rate is obtained when the lower part 
of the annulus is filled with Freon 113, as its thermal 
conductivity (K, = 6.45) is considerably below that 
of water. 

In the upper part of the annulus the highest heat 

2.0 

A, 1 

1.5 

1.0 

0.5 

0 

. 

Ra-. lo5 Ma-. 0 

Table 2 

Fluid( -)/fluid( +) h 

water/air 1.56 
water/silicon oil IO 1.79 
water/silicon oil 100 1.32 
Freon 113/water 1.03 

transfer rates can be observed for the system Freon 

113/water. In this case water is the lighter fluid at the 
top. The absolute maximum appears at the upper 
stagnation point, where the fluid which ascends from 
the inner cylinder impinges. From there, heat transfer 
rates decrease along the outer cylinder until the absol- 
ute minimum is obtained in the region of the dividing 
streamline of the counter-rotating eddies. This is fol- 
lowed by an increase up to the values at the interface. 
Similar behavior can be stated for the remaining fluid 
combinations. 

All calculated mean integral equivalent thermal 
conductivities A are given in Table 2. One has to recall 
that all values refer to the thermal conductivity of 
water. The results reveal that, for a given Rayleigh 
number (Ram = lo’), the most intensive heat transfer 
can be achieved with the system water/silicon oil 10 
because of a very intense convective flow in both 
layers. On the other hand the combination water/ 
silicon oil 100 yields smaller values than water/air 
as the water flow velocity close to the interface is 
retarded, owing to the high viscosity of the silicon oil. 
The system Freon 113/water comes off worst. This is 
due to the low thermal conductivity of the refrigerant 
as well as to the water-side heat transfer which is 
hampered by the secondary flow cell. These results 

6 

5 t A, 

L 

3 

2 

1 

0 

FIG. 9. Local distribution of the equivalent thermal conductivities A, along the outer cylinder for various 
fluid combinations and Ra- = 10’. 
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Fluid (+I 

Fluid i-1 

FIG. 10. Generation of an interfacial Row by a surface tension 
gradient. 

calculated for several fluid combinations do not claim 
completeness, but pretend to demonstrate exemplarily 
the influence of different property ratios on the heat 
transfer mechanisms. 

4.2. Thermocapillary convection 
The transport processes so far presented are based 

solely on thermal conduction and natural convec- 
tion due to buoyancy forces. In the case of very small 
dimensions or under mi~rogravity conditions, how- 
ever, a temperature gradient along the interface 
may induce Marangoni convection, due to the tem- 
perature dependence of the surface tension. This 
mechanism is explained by Fig. 10. The depicted sur- 

face element is submitted to a temperature difference 
T, > Tz. As the surface tension u mostly decreases 
with increasing temperature, an interfacial flow will 
result which is directed from the warm side to the cold 
side of the element, i.e. from the region of low surface 
tension to that of high surface tension. Thus the sur- 
face tension force acting on the surface element is 
opposed by viscous shear stress in the adjacent bulk 
phases, mainly in the liquid phase. If the surface ten- 
sion gradient is maintained, thermocapillary con- 
vection will develop as a continuous flow which pen- 
etrates into the fluids divided by the interface. 

The subject of this chapter is the influence of an 
interfacial flow on heat transfer. The computation was 
performed for a concentric horizontal and cylindrical 
annulus filled half with water and half with air. As 
the thermophysical properties of this combination are 
specified in the preceding section, only the surface 
tension 420”) = 7.22x lo-* N mm’ and its depen- 
dence of temperature do/dr = 1.75 x 10e4 N m- ’ K- ’ 
are stated here. In order to take into account 
buoyancy-driven convection as well as thermocapillary 
convection, the two following parametric studies 
were performed 

(1) Ra- = 500; 
Mu- = 0, -250, -500, -1000, -5000, -10,OOu 

(2) Ma- = - 1000; Ra- = 103, 104, 10’. 

Ma=-500 

M?i r-5000 M6 =-10000 
FIG. Il. Streamlines (left) and isotherms (right) for Ru- = 500 (W = 0.7; Pr- = 7.0) and various 

Marangoni numbers dfu- (system : water/air). 
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In both cases Pr+ = 0.7 and Pr- = 7.0, the Maran- 
goni number Mu- is defined by equation (1 Od). 

The development of thermocapillary dominated 
convection (Mu- = - 104) from pure buoyancy- 
driven flow (Mu- = 0) is vividly displayed by Fig. 11, 
representing the distribution of streamlines and iso- 
therms. Considering thermogravitational convection 
only, the secondary eddy above the interface is weak 
and occupies a small area. With the onset of surface 
tension effects the surface velocity is enhanced and the 
secondary flow cell grows in strength and volume. The 
interface velocity increases with growing Marangoni 
number IMu-(. The resulting flow cells below and 
above the interface have nearly identical shapes and 
a structure which is typical for pure shear flows (e.g. 
driven-cavity-problem). Due to the intensified capil- 
lary flow, the flow cell induced by gravity forces is 

0.10 

displaced more and more. For IMa- > 5000 only a 
small area is occupied, indicating that thermo- 
gravitational convection is of minor importance 
for a ratio JMa-/Ram( > 10. For &fu- = 0 heat trans- 
fer is dominated by heat conduction and the isotherms 
are nearly concentric circles. Due to the temperature 
gradients along the interface, statically unbalanced 
gradients of surface tension appear, causing a flow 
from the hot to the cold side. This motion leads to a 
contraction of the isotherms at the intersection of 
the interface and the outer wall. According to the 
strong rotary motion at higher Marangoni numbers, 
water is convected towards the inner cylinder, i.e. 
the maximum heat flux at the inner cylinder can 
be expected at a position close below the interface. 

The phenomena described above are evidenced by 
the distribution of the local equivalent conductivity 

RC = 500 
Mci - variabel 

0 3b 60 li0 150 1io- 
(a) 

IpA 

R<= 500 
MC- variable 

3o ” 90 120 150 180 

(b) Lp- 
FIG. 12. Local equivalent thermal conductivities along the outer (a) and inner (b) cylinder for Ra- = 500 

(Pr' = 0.7; Pr- = 7.0) and various Marangoni numbers Ma- (system : water/air). 
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Table 3 

10.5 

Ma- 0 -250 - 500 - 1000 - 5000 - 10,000 

A 0.539 0.615 0.682 0.791 1.156 1.454 

depicted in Fig. 12. The plots reveal that Marangoni 
convection improves heat transfer at the outer cylinder 
in any case, leading to absolute maxima at the point of 
contact between the interface and the outer wall. This 
statement, however, must be qualified for the inner 
cylinder. For IMu- < lo3 the heat transfer at the air- 
side part of the inner cylinder is decreased. Only for 
IMu-1 > lo3 does the heat flux receive an enhance- 

ment. 
At the circumference of the inner cylinder, wetted 

by water, an increasing Marangoni convection mani- 

fests itself in the formation of an absolute maximum 
which occurs at cp N 130” for Mu- = - 250 and which 

moves towards the interface with increasing Maran- 
goni number. Both plots demonstrate that heat trans- 
fer at the upper and lower stagnation points is 

not influenced by the thermocapillary flow, which 
acts only about the interface. 

An enhancement of the local equivalent thermal 
conductivity leads to an increase of the total heat flux. 

For Ra- = 500 the mean equivalent conductivities 
A given in Table 3 result. Accordingly Marangoni 
convection causes an intensification of heat transfer 
by nearly 270% for the highest Marangoni number 
under consideration, as compared with sole thermal 
convection (Mu- = 0). The value of 17i almost attains 
that which is achieved without Marangoni convection 
for Ra- = 1O’with the same geometric configuration. 

In order to understand the influence of Maran- 
goni convection on buoyancy-driven flow, a study 
was performed with constant Marangoni number 
(Ma- = - 103) and varying Rayleigh numbers 
(10’ < Ra- < IO’). The results are compared with the 
solutions given in Section 4.1 (Ma- = 0). The result- 
ing distributions of streamfunction and isotherms are 

shown in Fig. 13. It is evident that the influence of 
thermocapillary convection decreases with increasing 
Rayleigh number. Consequently, for Ram = 10’ only 
insignificant differences are detectable. The roll cell 
situated above the interface demonstrates that it 

Mi=O R&IO3 Ma=-1000 

Ma=0 R; = IO5 Mi =-lo00 
FIG. 13. Streamlines (left) and isotherms (right) for Ma- = 0 (left) and Ma- = - 1000 (right) at various 

Rayleigh numbers Ra- (Pr’ = 0.7; Pr- = 7.0 ; system : water/air). 
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Aa I 008 
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~ Ma-= - 1000 

120 150 180 
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t 5 h A 
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36 
(b1 3o 6o go 

li0 ' 150 lf 
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FIG. 14. Local equivalent thermal conductivity A, along the outer (a) and inner (b) cylinder for Ma- = 0, 
- 1000 and various Rayleigh numbers (Pr + = 0.7 ; Pr- = 7.0 ; system : water/air). 

grows in strength if an interfacial velocity, arising 
from surface tension effects, is imposed. Due to the 
more powerful convective motion in the annulus 
caused by Marangoni convection, heat transfer is also 
improved, especially for low Rayleigh numbers. 

This impression is confirmed by Fig. 14, where the 
local equivalent thermal conductivities are plotted 
along the inner and outer cylinder. Whereas at the 
upper part of the outer cylinder a considerable 
improvement of heat transfer can be observed only 
for Ra- = 103, the corresponding values of A, in the 
water-filled space show a clear tendency to higher 
maxima for Ra- = lo3 as well as for Ra- = 104. In 
contrast, only a slight influence of Marangoni con- 
vection can be observed for Ra- = 105. The plots for 
the inner cylinder, however, reveal a distinct influence 
of thermocapillary convection for all cases under con- 

sideration. Even for Ra- = 10’ an improvement can 
be stated near the interface. The occurrence of intense 
Marangoni convection at the inner cylinder is due to 
the strengthening of the secondary flow cell in the 
fluid(+) which intensifies the flow close to the inner 
cylinder. On the other hand the flow directed to the 
outer cylinder is stronger anyway, so that a velocity 
increase at the interface scarcely influences the tem- 
perature gradient. 

RU- 
A (Ma- = 0) 
A (Ma- = - 1000) 
Improvement 

Table 4 

5x IO2 10” IO4 10S 
0.539 0.573 0.924 1.557 
0.791 0.796 1.046 1.609 

46.6% 38.9% 13.2% 3.3% 
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As a result of the present investigation the following 
conclusion can be made: in the case of steady flow, 
Marangoni convection improves heat transfer. The 
improvement, however, diminishes with increasing 
Rayleigh number. This context is displayed by the 
mean integral equivalent thermal conductivities listed 
in Table 4. 
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TRANSFERT DE CHALEUR PAR CONVECTION THERMOGRAVITATIONNELLE ET 
THERMOCAPILLAIRE DANS UN ANNEAU HORIZONTAL FORME DE DEUX 

CYLINDRES CONCENTRIQUES ET EXCENTRIQUES ET REMPLI DE DEUX FLUIDES 
NON MISCIBLES 

R&mr&La convection laminaire naturelle (gravitationnelle) dans un anneau horizontal forme de deux 

cylindres concentriques et excentriques et rempli de deux fluides non miscibles (eau/air, eau/huile aux 
silicones 10, eau/huile aux silicones 100, Freon 113/eau) est etudiee a l’aide dun pro&de numtrique. Les 
repartitions de la fonction de courant et des temperatures, les conductivites thermiques tquivalentes locales 

et moyennes sont obtenues dans un large domaine du nombre de Rayleigh. L’influence de la convection 
thermocapillaire (convection de Marangoni) est demontree sur le systeme eau/air pour les mdmes con- 

figurations geomttriques. 

WARMEUBERTRAGUNG DURCH SCHWEREKONVEKTION UND 
THERMOKAPILLARE KONVEKTION IN EINEM MIT ZWEI NICHTMISCHBAREN 

FLUIDEN GEFULLTEN HORIZONTALEN RINGSPALT ZWISCHEN 
KONZENTRISCHEN UND EXZENTRISCHEN ZYLINDERN 

Zusammenfassung-Mit Hilfe eines numerischen Verfahrens wird die laminare Schwerekonvektion im 
konzentrischen und exzentrischen horizontalen Ringspalt zwischen zwei Zylindern, der mit zwei nicht- 
mischbaren Fluiden (Wasser/Luft, Wasser/Silikoniil 10, Wasser/Silikoniil 100, Frigen 113/Wasser) gefilllt 
ist, untersucht. Die Verteilungen von Stromfunktion und Temperatur, die ijrtlichen und mittleren 
aquivalenten Wlrmeleitfahigkeiten, werden in einem weiten Bereich der Rayleighzahl angegeben. Der 
EinfluB thermokapillarer Konvektion (Marangonikonvektion) wird am System Wasser/Luft, unter sonst 

gleicher geometrischer Konfiguration, aufgezeigt. 

TEHJIOOBMEH I-IPM TEPMOFPABHTAHHOHHOti H TEPMOKAHWJIJIRPHOfi 
KOHBEKHMM B KOHHEHTPA9ECKOM M 3KCHEHTPW9ECKOM KOJIbHEBbIX 

KAHAJIAX, 3AHOJIHEHHbIX ABYMII HECMEIIIWBAIOLLHIMMCfl ~KW~KOCTIIMM 

AHHOTaUHn-ftpnBOAKTCK WiCJleHHbIe paC’ieTbl AaMHHapHOii TepMOrpaBnTaunOHHOti KOHBeKnBW B KOH- 

ueHTpWK3CKHX Ei 3KCueHTpNSeCKnX rOpn30HTaJIbHbtX UNJtHHiTpWIeCKtiX KOAbUeBbIX KaHaAaX, 3anOJtHeH- 

HbIX AByMK HeCMemllBammUMHCK XWAKOCTKMA (BOAa-BOsAyX, noAa~:HnriKoHoBoe Macno 10, 
BOAa-CHAHKOHOBOe MaCAO 100, @peOH t13-BOAa). nOA,, CKOpOCTefi n TeMnepaTypbI, AC::aAbHble W 

cpentme 3KBHBaneHTHbre 3Haqemfn TennonpononnocTn uaiiAeHbr ana mwpoKor0 AaanasoHa Kncen 

Psnea. KpoMe roro, paccMarpesaercn BnnKHue TepMOKanH~~ffpHO~ KOHBeKnWH (KOHBeKuRK 

MapanroHH) B KOAbueBOM KaHaJIe AAK CACTeMbI BoAa-BO3AyX. 


